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In higher organisms, DNA replicates simultaneously from many origins. Recent in vitro experiments have
yielded large amounts of data on the state of replication of DNA fragments. From measurements of the time
dependence of the average size of replicated and nonreplicated domains, one can estimate the rate of initiation
of DNA replication origins, as well as the average rate at which DNA bases are copied. One problem in making
such estimates is that, in the experiments, the DNA is broken up into small fragments, whose finite size can
bias downward the measured averages. Here, we present a systematic way of accounting for this bias by
deriving theoretical relationships between the original domain-length distributions and fragment-domain length
distributions. We also derive unbiased average-domain-length estimators that yield accurate results, even in
cases where the replicated �or nonreplicated� domains are larger than the average DNA fragment. Then we
apply these estimators to previously obtained experimental data to extract improved estimates of replication
kinetics parameters.
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I. INTRODUCTION

In simple prokaryotic organisms such as the bacterium E.
coli, DNA replication begins at a single well-defined site, the
origin of replication. The total amount of DNA can be rep-
licated in about 20 min. In higher organisms, although the
copying rate of DNA replication is 100 times slower and the
genome 1000 times larger, replication can occur as quickly
as in bacteria. The apparent paradox is resolved by the ob-
servation that the replication of DNA proceeds in parallel at
many different sites along the genome. There are thus many
different �of order 100 000� replication origins in higher or-
ganisms. Some questions immediately arise: where are these
replication origins along the genome? Do they “fire” stochas-
tically, and, if so, with what rate?

Recent experiments in cell-free embryos of the often-used
frog Xenopus laevis have yielded enough data to begin to
explore such questions �1,2�. The data from these experi-
ments have been analyzed using a stochastic model origi-
nally developed to study crystallization kinetics by Kolmog-
orov �3�, Johnson and Mehl �4�, and Avrami �5� �KJMA�.
The KJMA model is a standard tool in materials science for
inferring details about nucleation processes from observa-
tions of the fraction of a system that is frozen as a function of
time �6�. In the 1980s, Sekimoto observed that the KJMA
model could be solved essentially exactly in one spatial di-
mension �7�. This work was extended by Ben-Naim and
Krapivsky �8,9�. Later, Herrick et al. applied the KJMA
model in one dimension to describe the progress of DNA
replication �10–12�. The application to DNA is possible be-
cause the KJMA model is a general description of a stochas-
tic process with three elements:

�1� initiation �the random firing of replication origins�;
�2� growth �replication forks spread out symmetrically�;
�3� coalescence �DNA replicates only once per cell cycle;

two replicated domains that meet thus coalesce�.

In the Xenopus experiments, replicated DNA was fluores-
cently labeled. Altering the label �particularly, its color� at a
selected time point during the replication process leads to
optical micrographs of fragments of DNA chromosomes that
show alternating domains of replicated and nonreplicated re-
gions of DNA at the time when the second type of labeled
nucleotide was added. In other words, one has a kind of
“snapshot” of the replication state of the DNA at a given
time. From many such snapshots acquired at many times,
one can infer quantities such as the average size of replicated
domains and of nonreplicated domains. The time dependence
of these averages then leads to inferred rates of origin initia-
tion and of the fork velocity.

One limitation of the above experiments is that while each
chromosome of DNA is a single molecule hundreds of mil-
lions of basepairs long, the process of preparing the optical-
microscope samples led to DNA fragments that were, on
average, only 100 kb long. As long as the typical sizes of
replicated and nonreplicated domains are much smaller than
this size, the finite size of the fragments will have little effect
on any estimates of average domain sizes. But if the average
domain size �of either a replicated or nonreplicated domain�
is comparable to the size of the fragment of DNA, there will
be an obvious bias downward of the inferred average, since
we can never observe a domain larger than the fragment
itself.

In this paper, we estimate the importance of such effects
and propose ways for removing the bias. We then reanalyze
the data of Herrick et al. �10� using improved estimates of
average domain sizes. Although our problem is motivated by
the application to DNA replication and we adopt language
appropriate to that case, the model itself is quite general and
applies to any situation where one-dimensional domains are
sampled by finite-size fragments.

II. EFFECT OF FINITE-SIZE FRAGMENTS
ON MEASURED LENGTH DISTRIBUTIONS

We first consider the effects that the finite size of DNA
fragments will have on domain-length distributions. For a*Electronic address: johnb@sfu.ca
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more leisurely discussion, see �13�. The general situation is
illustrated in Fig. 1. In part �a�, we show a section of a very
long DNA molecule, with two different types of domains.
For historical reasons having to do with the appearance of
partially replicated DNA in electron micrographs, replicated
domains are referred to as eyes and nonreplicated domains as
holes. In Fig. 1�b�, we see that if one examines a finite frag-
ment of DNA, eye and hole domains are subdivided into one
of three categories: A domain that is wholly contained within
the fragment is an interior domain; one that is cut off by the
edge of the fragment is an edge domain; and one that covers
the entire fragment and more is an oversized domain.

We can now formulate our problem more precisely: On
the long molecule of DNA, there is an original distribution
of eye lengths ��X�, which is the probability that an ob-
served domain will have length between X and X+dX. The
DNA molecule is then broken up into fragments. We will
consider two situations. In the first, the molecule is broken
into segments that all have the same length L �uniform-cut
model�. In the second, the fragments are distributed accord-
ing to a distribution � f�L�, with average �L�=�0

�L��L�dL
�general-cut model�. In both cases, we assume that cuts oc-
cur randomly with respect to specific locations on the origi-
nal molecule of DNA.

To simplify notation, we scale all lengths by �L�, setting
x�X / �L� and ��L / �L�. This leads to scaled probability dis-
tributions, defined by ��x�dx=��X�dX and � f���d�
=� f�L�dL.

Given ��x�, we define the frequency with which one ob-
serves an interior domain ni�x��Ni�x� /Nt, where Ni�x�dx is
the number of domains between x and x+dx observed out of
a total of Nt→� observed domains. The frequencies of ob-
serving edge domains, ne�x�, and oversized domains, no�x�
are defined similarly. We will consider the relative numbers
of interior, edge, and oversized domains in Sec. III later. We
also can normalize individually each of these frequency dis-
tributions to define probability distributions. For example,
�i�x�=ni�x� /�0

�ni�x�dx, with �0
��i�x�dx=1. There are similar

definitions for �e�x� and �o�x�. Although the probability dis-
tributions lack the information on the relative frequencies of
the three types of domains that is contained in the frequency

distributions, they are useful in evaluating statistics on ex-
perimental data, such as the average interior and edge do-
main sizes �xi�=�0

�x�i�x�dx and �xe�=�0
�x�e�x�dx.

Our question is then as follows: “Given a particular ��x�,
what will be the three observed derived frequency and prob-
ability distributions?” Of course, the question may be posed
for either hole or eye distributions. We will tackle this prob-
lem in two stages, considering first the uniform-cut model
and then the general-cut model.

A. Distribution of interior domains

We begin by considering how an arbitrary distribution
��x� on the infinite-length DNA generates an interior-domain
frequency distribution ni�x�, the expected fraction of do-
mains that are interior domains with size between x and x
+dx. Again, a domain can be either a hole or an eye. Let us
consider a domain of length X and the uniform-cut model
with fragments of length L. If x=X /L�1, the cut fragment
cannot contain the domain, implying that the fraction of in-
terior domains with x�1 is zero: ni�x�1�=0. If x�1, the
probability of having an interior domain is proportional to
the free length within this fragment, i.e., to 1−x �Fig. 2�. A
large domain then has a relatively small likelihood of being
contained within a fragment, while a small domain has a
relatively large likelihood. A domain that is longer than the
fragment cannot be contained at all. Combining these two
cases, we have

ni�x� = 	�1 − x���x� , x � 1,

0, x � 1.

 �1�

Normalizing Eq. �1� gives �i�x�.
The generalization to the case of a distribution of cut sizes

� f��� is straightforward: The probability that a domain of
size x is contained within a fragment of size � is ni�x ,��
=� f�����−x���x�, where � f��� is the fraction of fragments of
size �. Integrating over all fragment lengths � that are larger
than the interior domain, we find

ni��x� = ��x��
x

�

�� − x�� f���d� , �2�

where the limits of the integral reflect the fact that a segment
must be larger than the domain size x in order to contain it.
�Equation �2� reduces to �1� by taking � f���=���−1�, with
�� � the Dirac � function.� Again, one can deduce the corre-
sponding probability distribution �i��x� by requiring unit nor-

FIG. 1. Definitions of domain types. �a� An infinitely long seg-
ment of DNA consists of eyes �replicated regions� and holes �non-
replicated regions�. �b� On a finite fragment, there are interior, ex-
terior, and oversized domains for both the eyes �i� and holes �h�.
Shaded vertical wedges denote cuts in the DNA molecule.

FIG. 2. The free length over which an interior domain of size X
can be moved within a fragment of length L without being chopped
is L−X, implying a free fraction of 1−x.
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malization. Here, we use primes to denote distributions for
the general-cut case.

B. Distribution of edge domains

To understand the distribution of edge domains, we first
consider how a domain of size x� is cut. Then we consider
the probability density for a resulting edge domain to have a
size x�x�. In considering how a domain of size x� is cut,
there are two cases: if x��1, then the probability density that
it was cut was x�. Since the cut position is assumed to be
uniformly distributed along the DNA, the probability density
that the cut creates a domain of size x is then 2/x�. The
factor of 2 arises because each cut creates two edges. Thus,
the probability density that the cut produces a domain of size
x is �2/x�� ·x�=2.

In the second case, the original domain x� is larger than 1
and will always be cut. The probability of creating a domain
of size x is now uniform over the fragment and is thus 2, just
the same result as we found in the first case. Finally, we
observe that an edge domain of size x can be created by any
domain of size x��x. This leads to the relative frequency of
observing an edge domain of size x:

ne�x� = 2�
x

�

��x��dx�. �3�

Normalizing Eq. �3� leads to the probability distribution
�e�x�.

To generalize to the case where cuts are distributed as
� f���, we follow the logic in Sec. II A, multiplying Eq. �3� by
� f��� and integrating over �. Again, only cuts greater than x
can lead to an edge of size x. Thus, we have

ne��x� = 2�
x

�

� f���d��
x

�

��x��dx�, �4�

where �e��x� may again be determined by normalizing ne��x�.

C. Distribution of oversized domains

The simplest way to derive the distribution of oversized is
to recognize that there is a duality between domains and cut
fragments. That is, if one interchanges fragments with do-
mains and cut locations with domain boundaries, then the
oversized domains of the original case are just the interior
domains of the dual case �Fig. 3�.

Applying this analogy to the general-cut case, we have

no��x� = � f�x��
x

�

�x� − x���x��dx�. �5�

Equation �5� can be derived from Eq. �2� by interchanging
� f� � with �� � and changing the variable of integration from
�� to x�. To specialize to the uniform-cut case, we simply let
� f be a � function, as there is only a single cut size L. Then

no�x� = ��x − 1��
1

�

�x� − 1���x��dx�. �6�

A distribution of domains ��x� on an infinitely long mol-
ecule of DNA thus gives rise to three different domain dis-
tributions on finite segments of DNA. Table I summarizes
the formulas describing the three different domains in the
uniform- and general-cut cases.

D. Example

Finally, we illustrate these results by an example �Fig. 4�.
Let the original distribution be uniform between 0 and
100 units, and let the DNA be cut into fragments uniformly
distributed between 50 and 150 units. Then x=X /100, and
the interior-domain frequencies are given by

ni�x� = 	1 − x , 0 � x � 0.5,

�9/8� − �3/2�x + �1/2�x2, 0.5 � x � 1;

 �7�

the edge-domain frequencies are

FIG. 3. An illustration of the duality between domains and frag-
ments. �a� Oversized domain; �b� interior domain. �a� and �b� may
be derived from each other by interchanging fragments with do-
mains. Shaded vertical wedges denote places where the molecule is
cut.

TABLE I. Summary of the relationships between the fragment domain length distributions and the
original domain length distributions, for both uniform- and general-cut models. The � function is 1 for x
�1 and 0 for x�1.

Fragment distributions

Uniform-cut model General-cut model

Interior ni�x�=��x��1−x���1−x� ni��x�=��x��x
���−x�� f���d�

Edge ne�x�=2��1−x��x
���x��dx� ne��x�=2�x

�� f���d��x
���x��dx�

Oversized no�x�=��x−1��1
��x�−1���x��dx� no��x�=� f�x��x

��x�−x���x��dx�
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ne�x� = 	2�1 − x� , 0 � x � 0.5,

2��3/2� − x��1 − x� , 0.5 � x � 1;

 �8�

and the oversized-domain frequencies are

no�x� = 	0, 0 � x � 0.5,

�1/2� − x + �1/2�x2, 0.5 � x � 1.

 �9�

The frequencies ni, ne, and no are all zero for x�1. More
examples are given in �13�.

III. UNBIASED ESTIMATORS OF AVERAGE
DOMAIN SIZES

In Sec. II we saw how cutting up a long piece of DNA
into fragments led to three different types of subdomains:
interior, edge, and oversized. We then gave explicit formulas
for calculating the frequency distributions of each of these
domains, given an original distribution ��x�. In experiments,
one is faced with the reverse problem: given experimentally
measured frequency distributions ni�x�, ne�x�, and no�x�,
what can one infer about the original distribution ��x�?

In principle, from Eq. �2�, we can already invert measure-
ments of the fragment distribution � f��� and interior distri-
bution ni�x� to recover at least part of the original distribu-
tion ��x�; however, unless there is a great deal of data, ��x�
will be poorly determined �13�. It turns out, though, that the
algorithms for inferring replication initiation for DNA—the
motivation for our study—require knowledge only of the av-
erage replicated and unreplicated lengths. These are just �x�
��0

�x���x��dx� in our notation. In other words, we need only
to estimate the average domain size. In earlier work, we es-
timated this average using what we will call here the interior
estimator: x̄i�� j=1

n �xi� j /n, where �xi� j is the jth interior do-

main measured on the fragments. �We use overbars for sta-
tistical estimators derived from data and angle brackets for
averages over the distributions.� For a large amount of data,
x̄i→ �xi�. Obviously, since �i�x����x�, the estimator will in
general not converge to the true average domain size. Indeed,
we expect that �xi�� �x�, since domains larger than the frag-
ment size are excluded from the interior distribution. �In the
example above, �xi�=63/200=0.315, which is less than �x�
=0.5.� In other words, x̄i is a biased estimator of �x�. Can one
do better?

In this paper, we present two different unbiased estima-
tors. The first can be derived by integrating the frequency
distributions. For simplicity, we focus on the uniform-cut
case. Integrating the densities, we define ni=�0

�ni�x�dx, with
similar expressions for ne and no. Then

ni = �
0

1

��x�dx − �
0

1

x��x�dx

ne/2 = �
1

�

��x�dx + �
0

1

x��x�dx

no = �
1

�

x��x�dx − �
1

�

��x�dx . �10�

We see that no+ne /2= �x� and ni+ne /2=1. Going back to
dimensional units, we have

x̄1 =
X̄1

L
=

No + Ne/2

Ni + Ne/2
, �11�

where Ni, Ne, and No are the total number of observed inte-
rior, edge, and oversized domains. The result for ne /2 comes

from integration by parts. From Eq. �10�, we see that X̄1 is an
unbiased estimator of �X�. Equation �11� is a remarkable re-
sult: to estimate �X�, we merely need to know the fragment
size and to count the numbers of interior, edge, and oversized
domains. For example, if the domain size is a constant
ten times the cut size, each original domain will be cut into
nine oversized domains, two edge domains, and no interior
domains. Equation �11� then gives �x�1= �9+ �2/2�� /
�0+ �2/2��=10.

The generalization to a distribution of cuts follows the
same logic as our previous derivation. We integrate ni�, ne� /2,
and no� and add them, as above. After repeated integration by
parts, we find again that no�+ne� /2= �x� and ni�+ne� /2=1. We
then have the same result as Eq. �11�, with L replaced by �L�
�see the Appendix�. In the example at the end of Sec. II C,
we have ni�=25/48, ne�=23/24, and no�=1/48. Equation �11�
then gives �x�= ��1/48�+ �23/48�� / ��25/48�+ �23/48��=1/2,
which is the expected result.

By looking at the first moments of the frequency distribu-
tions, we can derive a second unbiased estimator. For the
single-cut case, we define xi

tot=�0
�xni�x�dx and have

FIG. 4. An example of the transformation of an original uniform
distribution of domains when cut into uniformly distributed frag-
ments. Interior, edge, and oversized frequency distributions are
shown. Monte Carlo simulations, with a total number of domains
Nt=104, are overlaid. There are no adjustable parameters.
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xi
tot = �

0

1

x��x�dx − �
0

1

x2��x�dx ,

xe
tot = �

1

�

��x�dx + �
0

1

x2��x�dx . �12�

Because there is only one size of the oversized domain, xo
tot

=no, as given by Eq. �10�. We then see that xi
tot+xe

tot+xo
tot

= �x�. In dimensional units, we have

x̄2 =
X̄2

L
=

Xi
tot + Xe

tot + Xo
tot

Ni + Ne/2
, �13�

where Xi
tot is the total length of all observed domains, with

analogous definitions for Xe
tot and Xo

tot. Intuitively, the sum of
these quantities is just the total length of all the domains,
whether they be interior, edge, or oversized. Dividing this by
the total number of domains �Ni+Ne /2� then gives our esti-
mator.

As before, the generalization to a distribution of fragment
sizes is straightforward and leads simply to replacing L by
�L� in Eq. �13�. In the example at the end of Sec. II C, one
finds xi

tot=71/384, xe
tot=29/96, and xo

tot=5/384. Summing
these gives 1/2, as before.

Both estimators x̄1 and x̄2 are unbiased. Since x̄1 merely
involves counting numbers of domains, it is clearly simpler
to measure from the data. However, at small x, the second
estimator has a lower variance �13�. This is reasonable, as x̄2
incorporates additional information concerning the lengths of
domains. Since the main interest of both estimators is their
lack of bias for moderate and large x, they are, in practice,
interchangeable.

We discuss one additional biased estimator,

x̄ie =
X̄ie

�L�
=

Xi
tot + Xe

tot

Ni + Ne/2
, �14�

which throws out the information from oversized domains.
�If the minimum fragment size Lmin�Xmax, the maximum
domain size, then there are no oversized domains and x̄ie will
be unbiased, but this condition will usually not be true.� As
we discuss in Sec. IV below, the experiments we analyze
give information about the interior and edge domains, but
not the oversized domains. As Fig. 5 illustrates, x̄ie, while
biased, is more accurate than x̄i. Again, we distinguish be-
tween �xie�, which is derived from moments of �i�x� and
�e�x�, and x̄ie, which is a statistic defined on experimental
data.

Finally, we note that it is possible to consider another
biased estimator that simply inverts Eq. �1� �13�. This
adjusted-interior estimator is based only on the interior dis-
tribution but corrects for the reduced “phase space” available
to larger interior domains. Of course, such an estimator can-
not give much information about domains larger than the
average fragment size. As one might expect, this estimator
performs better than the naive interior estimator but worse
than the interior-edge estimator discussed in the previous
paragraph.

IV. APPLICATION TO A XENOPUS REPLICATION
EXPERIMENT

In this section, we apply our methods for treating finite-
size effects to the experimental data of Herrick et al. �1,10�
on in vitro replication in Xenopus cell embryos. As discussed
in the Introduction, in this experiment, newly replicated
DNA is fluorescently labeled. At a given time point during
replication, one changes the color of the label, so that DNA
replicated after that time has a different label �color� than the
DNA previously replicated. At the end of replication, the
DNA is combed out onto a glass slide �14� �a process that
breaks up the DNA into short fragments typically 100 kb
long� and observed via two-color fluorescence microscopy.
Each fragment of DNA may be viewed as a “snapshot” of the
state of the DNA at the time the second dye was added. In
optical microscopy, the segments appear as alternating do-
mains of red and green, with the former color representing
regions of DNA that had replicated before the second dye
was added �eyes� and the latter the regions that had not yet
replicated �holes�. In the analysis proposed by Jun et al.
�10,12�, the key quantity is the average eye and hole size as
a function either of time or of replication fraction f . In that
work, all estimates of the average lengths of eyes and holes
were made using the interior estimator x̄i. Bias was avoided
by simply discarding data where the average eye or hole size
exceeded 10% of the average fragment size.

In addition to the limitations imposed by the finite size of
fragments, our main focus here, the experiment had two
other important limitations. First, the optical resolution lim-
ited the observable domain size to about 2 kb. Second, the
DNA analyzed came indiscriminately from approximately
20 000 cells, whose replication starting times were only ap-
proximately synchronized. This lack of synchrony meant that
the time point of the observation of the DNA fragment was

FIG. 5. Performance of different estimators, based on an expo-
nential distribution of domain sizes ��x�= �1/	�exp�−x /	�, with
average 	. All lengths are scaled by L, the �unique� fragment size.
Unbiased, interior, and interior-edge estimators are shown, with
Monte-Carlo simulation data overlaid. Points from the two unbiased
estimators are indistinguishable. To guarantee a 10% bias, the inte-
rior estimator requires x�0.08, while the interior-edge estimator
requires only that x�0.4.
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not a reliable indication of the DNA’s stage of overall repli-
cation. A simple way to get around this problem is to sort
data by replication fraction rather than by time. In effect, we
use the local replication fraction of each segment as the
“clock.” A more sophisticated way to deal with the data in-
volves estimating the starting-time distribution and deconvo-
luting its effects �10�.

Since our theory relies heavily on the assumption that cuts
on the DNA occur with equal probability anywhere along the
molecule, we first show how to test this assumption on the
data. Next, we recompute the relevant domain averages us-
ing the interior-edge estimator x̄ie introduced previously. Fi-
nally, we use the new data on domain averages to recompute
quantities of interest in DNA replication.

A. Is the DNA cut randomly?

As mentioned previously, our theory for reconstructing
domain averages from fragmented data assumes that the
original DNA molecule is broken up randomly. �We do not
assume a particular distribution of fragments, merely that the
fragmentation process itself is random.� We have tested for
two seemingly plausible scenarios. The first is that there is a
tendency to fragment at domain boundaries. The second is
that there is a preference to fragment in either hole or eye
domains.

Let us consider the case where cuts occur randomly. To
simplify the discussion, we again assume a uniform-cut size.
We consider the ratio r��xe� / �xi� of average edge-domain
size to average interior-domain size. From Table I, we com-
pute �e�x� and �i�x� by normalizing ne�x� and ni�x�. Then we
compute �xe� and �xi� by taking the first moments of �e and
�i. Explicitly, we have

r =

�
0

1

dx�x��
x

�

��x��dx�

�
0

1

dx�
x

�

��x��dx�

·

�
0

1

dx�1 − x���x�

�
0

1

dx�x��1 − x���x�
. �15�

In the limit �xe� and �xi�
1 �domains bigger than the frag-
ment size�, then r→3/2 for all reasonable distributions ��x�.
This may be seen by noting in this limit that ��x� is safely
approximated by ��0�. The integrals may then be evaluated
explicitly.

In the limit �xe� and �xi��1 �domains smaller than the
fragment size�, the ratio’s value depends on the shape of
��x�. If we consider the exponential distribution of Fig. 5,
then the ratio tends to 1. Both limits have identical behavior
in the general-cut model as long as the tails of the � f distri-
bution decay fast enough �e.g., exponentially�.

We focus on the exponential distribution because the
KJMA model predicts that if replication origins are distrib-
uted randomly along the genome, then holes will have an
exponential size distribution, with a mean whose size shrinks
during replication �11�. At the start of replication, there are
only small, isolated replicated domains, implying holes are
large. At the end, there are only small isolated holes left, with
a correspondingly small average. At any time, though, the

size distribution should be exponential. In order to test
whether holes are in fact exponentially distributed, we reana-
lyze the data of Herrick et al. Figure 6 shows the size distri-
bution of fragments, along with the distribution of replication
fraction f as evaluated on each fragment.

To study the distribution of hole lengths, we sort data as
follows: First, we avoid extremely long or short segments
and consider data only between 80 and 240 kb. This gives us
612 fragments �a majority of the total number�. Second, we
bin segments according to replication fraction f , as discussed
previously. To have adequate statistics, we use 20% bins for
f . Figure 7 shows edge and interior domains in the 0% to
20% bin. Except for the first point, the histograms are well fit
by exponentials. �We can account qualitatively for the lack of
domains in the 0–5 kb range by the limited optical resolu-
tion of the microscope observations.� The decay constants of
the exponential distributions give �xe� and �xi�. Figure 8
shows the ratio r= �xe� / �xi� as a function of the replication
fraction. As we see, r
3/2 for small f �where domains are
large� and 
1 at large f �where domains are small�. Note that
the test is only qualitative since we plot r as a function of f ,
and not a normalized domain size. We cannot simply do the
latter, as we have to use our theory �which assumes the result
we test� to evaluate the domain sizes and evaluate a null
hypothesis. Still, Fig. 8 suggests that the assumption of ran-
dom cuts is reasonable.

The second test is to see whether there is a preference for
cuts to occur on either holes or eyes. As discussed in �13�,
this test also leads to the qualitative conclusion that the cuts
are consistent with being randomly spaced. We thus conclude
that it is reasonable to apply the theory developed in this
paper to the dataset of Herrick et al. �1,10�. Physically, this

FIG. 6. �a� Distribution of lengths of combed DNA fragments.
The average length is 102 kb, with a standard deviation of 75 kb.
There are 1142 fragments in the dataset. �b� Distribution of the
replication fraction of the DNA fragments.
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conclusion makes sense: in the experimental protocol, there
is essentially no physical difference between replicated and
nonreplicated domains. Since visualization occurs after full
completion of the replication cycle, both domains have in
fact been fully replicated, and what distinguishes them is
simply the type of fluorescent label that is attached. Still, it is
interesting that one can do independent tests about the nature
of the cuts.

B. Reanalysis of the data

We may now proceed to redo the analysis of the data
presented in Herrick et al. �10�. Because the replication start-
ing times of individual DNA molecules is unknown, we can-
not use the data from oversized domains, as we have no way
of knowing what replication fraction to assign them to. As a
result, we cannot use the unbiased estimators discussed ear-
lier; however, we can use the interior-edge estimator.

In Fig. 9, we show the average eye and hole lengths, as a
function of the replication fraction, as computed using the
interior estimator �as originally done by Herrick et al. in
�10�� and with our interior-edge estimator. As we can see, the
main differences occur at f �0.2 for the holes and f �0.8 for

the eyes. In both cases, the limit is where the average domain
size is large.

In the earlier analysis of Herrick et al. �10�, the problem-
atic parts of the data were simply truncated and curve fits on
the data were done on partial data ranges. In Fig. 9, we have
overlaid a curve based on a fit to the theory of Herrick et al.
�10�. In that theory, a parameter-free inversion is first done to
estimate the initiation rate I�t� of replication origins. This
function is given �for both the interior and interior-edge es-
timators� in Fig. 10. Noting that the form of I�t� is well
approximated by straight-line segments, we fit two line seg-
ments to the I�t� data, as shown. �We neglect the decreasing
data in the third segment, since one can show that finite-size
effects lead to a systematic undercount of initiation rates at
long times, where there is little data �12�.� This bilinear form
for I�t� is then used to generate the curve that is superposed
on the domain-length data in Fig. 9. As we can see, there is
little qualitative difference in the two estimates of I�t�. The
quantitative parameters, which differ �particularly the slope
I2 of the second segment�, are given in Table II. We can trace
the overall similarity of the two results back to the fact that
the two domain-length estimators agree over a large range in
Fig. 9 that the extrapolation to the missing data done in the
original analysis of the interior-domain data is accurate.

FIG. 7. Histograms of interior and edge hole domains, for rep-
lication fraction f between 0 and 0.2. Solid lines are fits to expo-
nential distributions, excluding the first point �see the discussion in
the text�.

FIG. 8. Ratio of average edge domain length to average interior
domain length as a function of the replication fraction. The dashed
lines show the expected limits, 1.5 for small f , or large domains,
and 1 for large f , or small domains.

FIG. 9. Average hole �a� and eye �b� lengths as a function of
replication fraction f . Open circles are computed with the interior
estimator, filled squares with the interior-edge estimator. The solid
curve is a fit based on the theory of Herrick et al. �10�.
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V. CONCLUSIONS

In this paper, we have studied the effects of cutting long
molecules of DNA into short fragments on the distributions
of domain lengths in DNA experiments. We have seen how
the fragmentation of the DNA leads to three different types
of domains—interior, edge, and oversized. From an original
distribution of domain lengths ��x�, we can calculate the fre-
quency distributions of these three fragment domains. We
can also use statistics such as the average of interior, edge,
and oversized domains to make unbiased estimations of the
average domain size. The lack of starting-time synchrony in
the DNA experiment that motivated this work meant that we
had information on only two types of domains; interior and
edge. We used those quantities to create an interior-edge
estimator that, while biased, was more accurate than the pre-
viously used interior estimator. In the particular example of
an exponential distribution �valid for holes in the replication
experiments�, the interior-edge estimator increased the maxi-
mum usable domain size by a factor of 5. In the end, the

results of the reanalysis of the data of Herrick et al. �10� led
to results that were very close to those originally obtained.
We conclude that robust results may be obtained, even with a
“naive” analysis of DNA replication.

Future experiments, however, may have to rely on the
more sophisticated analysis given in this paper. The type of
replication studied in the Xenopus experiments was quite
special, in that the experiments were done on DNA in cell
embryos just after conception and before the process of cell
differentiation had begun. At that stage of life, little if any
proteins need to be synthesized �they are stored in the egg�,
and DNA replication occurs rapidly, with an extremely large
number of origins. The average interorigin separation in-
ferred by Herrick et al. was 6.3 kb, compared to an average
domain size of 
100 kb �10�. Thus, the experiments were
conducted in a limit where finite-size effects could be ex-
pected to be small. �The interorigin separation sets a mini-
mum length scale for average domain sizes and is relevant in
the middle portion of replication. Individual domains, par-
ticularly at the beginning and end of the replication process,
can be much larger than this size.� By contrast, in human
developed cells, the average interorigin separation can be as
much as 100 kb �15�. While there is some potential for ex-
perimentally increasing the average fragment size in the
combing technique, it is clear that finite-size effects will be
much more important in such work.

Finally, as noted earlier, while this work was motivated by
the desire to understand more fully an experiment on DNA
replication, the specific theory developed here to treat finite-
size effects is a general one that will apply to any situation
where one-dimensional domains on a long substrate are cut
into fragments.
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APPENDIX: DERIVATION OF THE UNBIASED
ESTIMATORS

Here, we sketch the derivation of the unbiased estimator
of Eq. �11� for the general-cut model. The derivation mostly
consists of repeated integration by parts. In all cases, the
boundary terms are zero.

From Eq. �2�, we have

ni� = �
0

�

dx ��x��
x

�

d� �� f��� − �
0

�

dx x��x��
x

�

d� � f��� .

�A1�

From Eq. �4�, we have

ne�/2 = �
0

�

dx�
x

�

d� � f����
x

�

dx���x�� �A2�

=�
0

�

dx x��x��
x

�

d� � f��� + �
0

�

d� �� f����
�

�

dx ��x�

�A3�

FIG. 10. Extracted initiation rate I�t� as a function of time t
using data estimated from the interior estimator �a� and interior-
edge estimator �b�.

TABLE II. Extracted nucleation rate I�t� and fork velocity v
from data analyzed using two estimators of average domain sizes.
The slopes I1 and I2 refer to the first and second of the straight-line
segments. The time Tc refers to the time marking the end of seg-
ment 1 and beginning of segment 2.

Estimator v �kb/min� I1 I2 Tc �min�

Interior 0.58 5.1�10−4 8.8�10−3 18.1

Interior edge 0.62 4.1�10−4 5.0�10−3 17.4

H. ZHANG AND J. BECHHOEFER PHYSICAL REVIEW E 73, 051903 �2006�

051903-8



=�
0

�

dx x��x��
x

�

d� � f��� + �
0

�

dx ��x��
0

x

d� �� f��� ,

�A4�

where we have integrated by parts and used �0
� dx ��x�=1.

After again integrating Eq. �A4� by parts, we add Eqs. �A1�
and �A4� and find

ni� + ne�/2 = �
0

�

dx ��x���
0

x

d� �� f��� + �
x

�

d� �� f����
= �

0

�

dx ��x� = 1, �A5�

since ���=1 in our scaled units.
Similarly, we start from Eq. �5� and integrate each term by

parts to find

no� = �
0

�

d� � f����
�

�

dx x��x� − �
0

�

d� �� f����
�

�

dx ��x�

�A6�

=�
0

�

dx x��x��
0

x

d� � f��� − �
0

�

dx ��x��
0

x

d��� f��� .

�A7�

Then

no� + ne�/2 = �
0

�

dx x��x���
0

x

d� � f��� + �
x

�

d� � f����
= �

0

�

dx x��x��1� = �x� . �A8�

The result for the second unbiased estimator, Eq. �13�,
xi

tot+xe
tot+xo

tot= �x�, is established in a similar manner.
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